Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CertPri: Certifiable Prioritization for Deep Neural Networks via Movement Cost in Feature Space (2307.09375v1)

Published 18 Jul 2023 in cs.SE and cs.AI

Abstract: Deep neural networks (DNNs) have demonstrated their outperformance in various software systems, but also exhibit misbehavior and even result in irreversible disasters. Therefore, it is crucial to identify the misbehavior of DNN-based software and improve DNNs' quality. Test input prioritization is one of the most appealing ways to guarantee DNNs' quality, which prioritizes test inputs so that more bug-revealing inputs can be identified earlier with limited time and manual labeling efforts. However, the existing prioritization methods are still limited from three aspects: certifiability, effectiveness, and generalizability. To overcome the challenges, we propose CertPri, a test input prioritization technique designed based on a movement cost perspective of test inputs in DNNs' feature space. CertPri differs from previous works in three key aspects: (1) certifiable: it provides a formal robustness guarantee for the movement cost; (2) effective: it leverages formally guaranteed movement costs to identify malicious bug-revealing inputs; and (3) generic: it can be applied to various tasks, data, models, and scenarios. Extensive evaluations across 2 tasks (i.e., classification and regression), 6 data forms, 4 model structures, and 2 scenarios (i.e., white-box and black-box) demonstrate CertPri's superior performance. For instance, it significantly improves 53.97% prioritization effectiveness on average compared with baselines. Its robustness and generalizability are 1.41~2.00 times and 1.33~3.39 times that of baselines on average, respectively.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.