Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Identifying Explanation Needs of End-users: Applying and Extending the XAI Question Bank (2307.09369v1)

Published 18 Jul 2023 in cs.HC

Abstract: Explanations in XAI are typically developed by AI experts and focus on algorithmic transparency and the inner workings of AI systems. Research has shown that such explanations do not meet the needs of users who do not have AI expertise. As a result, explanations are often ineffective in making system decisions interpretable and understandable. We aim to strengthen a socio-technical view of AI by following a Human-Centered Explainable Artificial Intelligence (HC-XAI) approach, which investigates the explanation needs of end-users (i.e., subject matter experts and lay users) in specific usage contexts. One of the most influential works in this area is the XAI Question Bank (XAIQB) by Liao et al. The authors propose a set of questions that end-users might ask when using an AI system, which in turn is intended to help developers and designers identify and address explanation needs. Although the XAIQB is widely referenced, there are few reports of its use in practice. In particular, it is unclear to what extent the XAIQB sufficiently captures the explanation needs of end-users and what potential problems exist in the practical application of the XAIQB. To explore these open questions, we used the XAIQB as the basis for analyzing 12 think-aloud software explorations with subject matter experts. We investigated the suitability of the XAIQB as a tool for identifying explanation needs in a specific usage context. Our analysis revealed a number of explanation needs that were missing from the question bank, but that emerged repeatedly as our study participants interacted with an AI system. We also found that some of the XAIQB questions were difficult to distinguish and required interpretation during use. Our contribution is an extension of the XAIQB with 11 new questions. In addition, we have expanded the descriptions of all new and existing questions to facilitate their use.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.