Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Mobility-Aware Joint User Scheduling and Resource Allocation for Low Latency Federated Learning (2307.09263v1)

Published 18 Jul 2023 in cs.DC and cs.LG

Abstract: As an efficient distributed machine learning approach, Federated learning (FL) can obtain a shared model by iterative local model training at the user side and global model aggregating at the central server side, thereby protecting privacy of users. Mobile users in FL systems typically communicate with base stations (BSs) via wireless channels, where training performance could be degraded due to unreliable access caused by user mobility. However, existing work only investigates a static scenario or random initialization of user locations, which fail to capture mobility in real-world networks. To tackle this issue, we propose a practical model for user mobility in FL across multiple BSs, and develop a user scheduling and resource allocation method to minimize the training delay with constrained communication resources. Specifically, we first formulate an optimization problem with user mobility that jointly considers user selection, BS assignment to users, and bandwidth allocation to minimize the latency in each communication round. This optimization problem turned out to be NP-hard and we proposed a delay-aware greedy search algorithm (DAGSA) to solve it. Simulation results show that the proposed algorithm achieves better performance than the state-of-the-art baselines and a certain level of user mobility could improve training performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube