Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cross-points in the Dirichlet-Neumann method II: a geometrically convergent variant (2307.09204v1)

Published 18 Jul 2023 in math.NA and cs.NA

Abstract: When considered as a standalone iterative solver for elliptic boundary value problems, the Dirichlet-Neumann (DN) method is known to converge geometrically for domain decompositions into strips, even for a large number of subdomains. However, whenever the domain decomposition includes cross-points, i.e.$!$ points where more than two subdomains meet, the convergence proof does not hold anymore as the method generates subproblems that might not be well-posed. Focusing on a simple two-dimensional example involving one cross-point, we proposed in a previous work a decomposition of the solution into two parts: an even symmetric part and an odd symmetric part. Based on this decomposition, we proved that the DN method was geometrically convergent for the even symmetric part and that it was not well-posed for the odd symmetric part. Here, we introduce a new variant of the DN method which generates subproblems that remain well-posed for the odd symmetric part as well. Taking advantage of the symmetry properties of the domain decomposition considered, we manage to prove that our new method converges geometrically in the presence of cross-points. We also extend our results to the three-dimensional case, and present numerical experiments that illustrate our theoretical findings.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.