Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Soft-IntroVAE for Continuous Latent space Image Super-Resolution (2307.09008v1)

Published 18 Jul 2023 in eess.IV and cs.CV

Abstract: Continuous image super-resolution (SR) recently receives a lot of attention from researchers, for its practical and flexible image scaling for various displays. Local implicit image representation is one of the methods that can map the coordinates and 2D features for latent space interpolation. Inspired by Variational AutoEncoder, we propose a Soft-introVAE for continuous latent space image super-resolution (SVAE-SR). A novel latent space adversarial training is achieved for photo-realistic image restoration. To further improve the quality, a positional encoding scheme is used to extend the original pixel coordinates by aggregating frequency information over the pixel areas. We show the effectiveness of the proposed SVAE-SR through quantitative and qualitative comparisons, and further, illustrate its generalization in denoising and real-image super-resolution.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.