Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MLP Fusion: Towards Efficient Fine-tuning of Dense and Mixture-of-Experts Language Models (2307.08941v3)

Published 18 Jul 2023 in cs.LG and cs.CL

Abstract: Fine-tuning a pre-trained LLM (PLM) emerges as the predominant strategy in many natural language processing applications. However, this process is known to be expensive, especially on edge devices with low computing power. While general approaches (e.g. quantization and distillation) have been widely studied to reduce the compute/memory of PLM fine-tuning, one-shot compression techniques specifically designed for fine-tuning remain largely unexplored. In this paper, we investigate the neural tangent kernel (NTK)--which reveals the gradient descent dynamics of neural networks--of the multilayer perceptrons (MLP) modules in a PLM and propose to coin a lightweight PLM through NTK-approximating MLP fusion. By incorporating NTK into the compression process, MLP Fusion not only preserves the original model's output but also maintains its training dynamics. To achieve this, we reconsider the MLP as a bundle of sub-MLPs and cluster them into a given number of centroids, which can then be restored as a compressed MLP and surprisingly well approximate the NTK of the original PLM. Our approach is applicable to both standard MLP modules and Mixture-of-Experts (MoE) modules in PLMs, demonstrating its scalability and versatility. Additionally, we provide theoretical derivations to demonstrate how the proposed compression preserves the NTK. Extensive experiments of PLM fine-tuning on both natural language understanding and generation tasks are provided to verify the effectiveness of MLP fusion. Our code is available at https://github.com/weitianxin/MLP_Fusion.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube