Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Predicted-Updates Dynamic Model: Offline, Incremental, and Decremental to Fully Dynamic Transformations (2307.08890v2)

Published 17 Jul 2023 in cs.DS and cs.LG

Abstract: We formulate the predicted-updates dynamic model, one of the first beyond-worst-case models for dynamic algorithms, which generalizes a large set of well-studied dynamic models including the offline dynamic, incremental, and decremental models to the fully dynamic setting when given predictions about the update times of the elements. In the most basic form of our model, we receive a set of predicted update times for all of the updates that occur over the event horizon. We give a novel framework that "lifts" offline divide-and-conquer algorithms into the fully dynamic setting with little overhead. Using this, we are able to interpolate between the offline and fully dynamic settings; when the $\ell_1$ error of the prediction is linear in the number of updates, we achieve the offline runtime of the algorithm (up to $\mathrm{poly} \log n$ factors). Provided a fully dynamic backstop algorithm, our algorithm will never do worse than the backstop algorithm regardless of the prediction error. Furthermore, our framework achieves a smooth linear trade-off between $\ell_1$ error in the predictions and runtime. These correspond to the desiderata of consistency, robustness, and graceful degradation of the algorithms-with-predictions literature. We further extend our techniques to incremental and decremental settings, transforming algorithms in these settings when given predictions of only the deletion and insertion times, respectively. Our framework is general, and we apply it to obtain improved efficiency bounds over the state-of-the-art dynamic algorithms for a variety of problems including triconnectivity, planar digraph all pairs shortest paths, $k$-edge connectivity, and others, for prediction error of reasonable magnitude.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.