Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

Uncovering Load-Altering Attacks Against N-1 Secure Power Grids: A Rare-Event Sampling Approach (2307.08788v1)

Published 17 Jul 2023 in eess.SY, cs.CR, and cs.SY

Abstract: Load-altering attacks targetting a large number of IoT-based high-wattage devices (e.g., smart electric vehicle charging stations) can lead to serious disruptions of power grid operations. In this work, we aim to uncover spatiotemporal characteristics of LAAs that can lead to serious impact. The problem is challenging since existing protection measures such as $N-1$ security ensures that the power grid is naturally resilient to load changes. Thus, strategically injected load perturbations that lead to network failure can be regarded as \emph{rare events}. To this end, we adopt a rare-event sampling approach to uncover LAAs distributed temporally and spatially across the power network. The key advantage of this sampling method is the ability of sampling efficiently from multi-modal conditional distributions with disconnected support. Furthermore, we systematically compare the impacts of static (one-time manipulation of demand) and dynamic (attack over multiple time periods) LAAs. We perform extensive simulations using benchmark IEEE test simulations. The results show (i) the superiority and the need for rare-event sampling in the context of uncovering LAAs as compared to other sampling methodologies, (ii) statistical analysis of attack characteristics and impacts of static and dynamic LAAs, and (iii) cascade sizes (due to LAA) for different network sizes and load conditions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube