Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient and Accurate Optimal Transport with Mirror Descent and Conjugate Gradients (2307.08507v4)

Published 17 Jul 2023 in cs.LG

Abstract: We propose Mirror Descent Optimal Transport (MDOT), a novel method for solving discrete optimal transport (OT) problems with high precision, by unifying temperature annealing in entropic-regularized OT (EOT) with mirror descent techniques. In this framework, temperature annealing produces a sequence of EOT dual problems, whose solution gradually gets closer to the solution of the original OT problem. We solve each problem efficiently using a GPU-parallel nonlinear conjugate gradients algorithm (PNCG) that outperforms traditional Sinkhorn iterations under weak regularization. Moreover, our investigation also reveals that the theoretical convergence rate of Sinkhorn iterations can exceed existing non-asymptotic bounds when its stopping criterion is tuned in a manner analogous to MDOT. Our comprehensive ablation studies of MDOT-PNCG affirm its robustness across a wide range of algorithmic parameters. Benchmarking on 24 problem sets of size $n=4096$ in a GPU environment demonstrate that our method attains high-precision, feasible solutions significantly faster than a representative set of existing OT solvers, including accelerated gradient methods and advanced Sinkhorn variants, in both wall-clock time and number of operations. Empirical convergence rates range between $O(n2 \varepsilon{-1/4})$ and $O(n2 \varepsilon{-1})$, where $\varepsilon$ is the optimality gap. For problem sizes up to $n=16384$, the empirical runtime scales as $O(n2)$ for moderate precision and as $O(n{5/2})$ at worst for high precision. These findings establish MDOT-PNCG as a compelling alternative to current OT solvers, particularly in challenging weak-regularization regimes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com