Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning (2307.08415v1)

Published 17 Jul 2023 in cs.CV

Abstract: We propose a novel semi-supervised active learning (SSAL) framework for monocular 3D object detection with LiDAR guidance (MonoLiG), which leverages all modalities of collected data during model development. We utilize LiDAR to guide the data selection and training of monocular 3D detectors without introducing any overhead in the inference phase. During training, we leverage the LiDAR teacher, monocular student cross-modal framework from semi-supervised learning to distill information from unlabeled data as pseudo-labels. To handle the differences in sensor characteristics, we propose a data noise-based weighting mechanism to reduce the effect of propagating noise from LiDAR modality to monocular. For selecting which samples to label to improve the model performance, we propose a sensor consistency-based selection score that is also coherent with the training objective. Extensive experimental results on KITTI and Waymo datasets verify the effectiveness of our proposed framework. In particular, our selection strategy consistently outperforms state-of-the-art active learning baselines, yielding up to 17% better saving rate in labeling costs. Our training strategy attains the top place in KITTI 3D and birds-eye-view (BEV) monocular object detection official benchmarks by improving the BEV Average Precision (AP) by 2.02.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.