Papers
Topics
Authors
Recent
2000 character limit reached

Weak approximation for stochastic reaction-diffusion equation near sharp interface limit (2307.08241v2)

Published 17 Jul 2023 in math.NA, cs.NA, and math.PR

Abstract: It is known that when the diffuse interface thickness $\epsilon$ vanishes, the sharp interface limit of the stochastic reaction-diffusion equation is formally a stochastic geometric flow. To capture and simulate such geometric flow, it is crucial to develop numerical approximations whose error bounds depends on $\frac 1\epsilon$ polynomially. However, due to loss of spectral estimate of the linearized stochastic reaction-diffusion equation, how to get such error bound of numerical approximation has been an open problem. In this paper, we solve this weak error bound problem for stochastic reaction-diffusion equations near sharp interface limit. We first introduce a regularized problem which enjoys the exponential ergodicity. Then we present the regularity analysis of the regularized Kolmogorov and Poisson equations which only depends on $\frac 1{\epsilon}$ polynomially. Furthermore, we establish such weak error bound. This phenomenon could be viewed as a kind of the regularization effect of noise on the numerical approximation of stochastic partial differential equation (SPDE). As a by-product, a central limit theorem of the weak approximation is shown near sharp interface limit. Our method of proof could be extended to a number of other spatial and temporal numerical approximations for semilinear SPDEs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.