Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Quantum Convolutional Neural Network Approach for Object Detection and Classification (2307.08204v1)

Published 17 Jul 2023 in quant-ph and cs.LG

Abstract: This paper presents a comprehensive evaluation of the potential of Quantum Convolutional Neural Networks (QCNNs) in comparison to classical Convolutional Neural Networks (CNNs) and Artificial / Classical Neural Network (ANN) models. With the increasing amount of data, utilizing computing methods like CNN in real-time has become challenging. QCNNs overcome this challenge by utilizing qubits to represent data in a quantum environment and applying CNN structures to quantum computers. The time and accuracy of QCNNs are compared with classical CNNs and ANN models under different conditions such as batch size and input size. The maximum complexity level that QCNNs can handle in terms of these parameters is also investigated. The analysis shows that QCNNs have the potential to outperform both classical CNNs and ANN models in terms of accuracy and efficiency for certain applications, demonstrating their promise as a powerful tool in the field of machine learning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.