Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

On posterior consistency of data assimilation with Gaussian process priors: the 2D Navier-Stokes equations (2307.08136v3)

Published 16 Jul 2023 in math.ST, cs.NA, math.AP, math.NA, and stat.TH

Abstract: We consider a non-linear Bayesian data assimilation model for the periodic two-dimensional Navier-Stokes equations with initial condition modelled by a Gaussian process prior. We show that if the system is updated with sufficiently many discrete noisy measurements of the velocity field, then the posterior distribution eventually concentrates near the ground truth solution of the time evolution equation, and in particular that the initial condition is recovered consistently by the posterior mean vector field. We further show that the convergence rate can in general not be faster than inverse logarithmic in sample size, but describe specific conditions on the initial conditions when faster rates are possible. In the proofs we provide an explicit quantitative estimate for backward uniqueness of solutions of the two-dimensional Navier-Stokes equations.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.