Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LafitE: Latent Diffusion Model with Feature Editing for Unsupervised Multi-class Anomaly Detection (2307.08059v1)

Published 16 Jul 2023 in cs.CV

Abstract: In the context of flexible manufacturing systems that are required to produce different types and quantities of products with minimal reconfiguration, this paper addresses the problem of unsupervised multi-class anomaly detection: develop a unified model to detect anomalies from objects belonging to multiple classes when only normal data is accessible. We first explore the generative-based approach and investigate latent diffusion models for reconstruction to mitigate the notorious identity shortcut'' issue in auto-encoder based methods. We then introduce a feature editing strategy that modifies the input feature space of the diffusion model to further alleviateidentity shortcuts'' and meanwhile improve the reconstruction quality of normal regions, leading to fewer false positive predictions. Moreover, we are the first who pose the problem of hyperparameter selection in unsupervised anomaly detection, and propose a solution of synthesizing anomaly data for a pseudo validation set to address this problem. Extensive experiments on benchmark datasets MVTec-AD and MPDD show that the proposed LafitE, \ie, Latent Diffusion Model with Feature Editing, outperforms state-of-art methods by a significant margin in terms of average AUROC. The hyperparamters selected via our pseudo validation set are well-matched to the real test set.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.