Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Multi-Heuristic Search-based Motion Planning for Automated Parking (2307.07857v1)

Published 15 Jul 2023 in cs.RO and cs.AI

Abstract: In unstructured environments like parking lots or construction sites, due to the large search-space and kinodynamic constraints of the vehicle, it is challenging to achieve real-time planning. Several state-of-the-art planners utilize heuristic search-based algorithms. However, they heavily rely on the quality of the single heuristic function, used to guide the search. Therefore, they are not capable to achieve reasonable computational performance, resulting in unnecessary delays in the response of the vehicle. In this work, we are adopting a Multi-Heuristic Search approach, that enables the use of multiple heuristic functions and their individual advantages to capture different complexities of a given search space. Based on our knowledge, this approach was not used previously for this problem. For this purpose, multiple admissible and non-admissible heuristic functions are defined, the original Multi-Heuristic A* Search was extended for bidirectional use and dealing with hybrid continuous-discrete search space, and a mechanism for adapting scale of motion primitives is introduced. To demonstrate the advantage, the Multi-Heuristic A* algorithm is benchmarked against a very popular heuristic search-based algorithm, Hybrid A*. The Multi-Heuristic A* algorithm outperformed baseline in both terms, computation efficiency and motion plan (path) quality.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.