Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

BehAVExplor: Behavior Diversity Guided Testing for Autonomous Driving Systems (2307.07493v1)

Published 14 Jul 2023 in cs.SE

Abstract: Testing Autonomous Driving Systems (ADSs) is a critical task for ensuring the reliability and safety of autonomous vehicles. Existing methods mainly focus on searching for safety violations while the diversity of the generated test cases is ignored, which may generate many redundant test cases and failures. Such redundant failures can reduce testing performance and increase failure analysis costs. In this paper, we present a novel behavior-guided fuzzing technique (BehAVExplor) to explore the different behaviors of the ego vehicle (i.e., the vehicle controlled by the ADS under test) and detect diverse violations. Specifically, we design an efficient unsupervised model, called BehaviorMiner, to characterize the behavior of the ego vehicle. BehaviorMiner extracts the temporal features from the given scenarios and performs a clustering-based abstraction to group behaviors with similar features into abstract states. A new test case will be added to the seed corpus if it triggers new behaviors (e.g., cover new abstract states). Due to the potential conflict between the behavior diversity and the general violation feedback, we further propose an energy mechanism to guide the seed selection and the mutation. The energy of a seed quantifies how good it is. We evaluated BehAVExplor on Apollo, an industrial-level ADS, and LGSVL simulation environment. Empirical evaluation results show that BehAVExplor can effectively find more diverse violations than the state-of-the-art.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube