Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

PseudoCal: A Source-Free Approach to Unsupervised Uncertainty Calibration in Domain Adaptation (2307.07489v1)

Published 14 Jul 2023 in cs.LG and cs.CV

Abstract: Unsupervised domain adaptation (UDA) has witnessed remarkable advancements in improving the accuracy of models for unlabeled target domains. However, the calibration of predictive uncertainty in the target domain, a crucial aspect of the safe deployment of UDA models, has received limited attention. The conventional in-domain calibration method, \textit{temperature scaling} (TempScal), encounters challenges due to domain distribution shifts and the absence of labeled target domain data. Recent approaches have employed importance-weighting techniques to estimate the target-optimal temperature based on re-weighted labeled source data. Nonetheless, these methods require source data and suffer from unreliable density estimates under severe domain shifts, rendering them unsuitable for source-free UDA settings. To overcome these limitations, we propose PseudoCal, a source-free calibration method that exclusively relies on unlabeled target data. Unlike previous approaches that treat UDA calibration as a \textit{covariate shift} problem, we consider it as an unsupervised calibration problem specific to the target domain. Motivated by the factorization of the negative log-likelihood (NLL) objective in TempScal, we generate a labeled pseudo-target set that captures the structure of the real target. By doing so, we transform the unsupervised calibration problem into a supervised one, enabling us to effectively address it using widely-used in-domain methods like TempScal. Finally, we thoroughly evaluate the calibration performance of PseudoCal by conducting extensive experiments on 10 UDA methods, considering both traditional UDA settings and recent source-free UDA scenarios. The experimental results consistently demonstrate the superior performance of PseudoCal, exhibiting significantly reduced calibration error compared to existing calibration methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.