Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Detecting LLM-Generated Text in Computing Education: A Comparative Study for ChatGPT Cases (2307.07411v1)

Published 10 Jul 2023 in cs.CL and cs.CY

Abstract: Due to the recent improvements and wide availability of LLMs, they have posed a serious threat to academic integrity in education. Modern LLM-generated text detectors attempt to combat the problem by offering educators with services to assess whether some text is LLM-generated. In this work, we have collected 124 submissions from computer science students before the creation of ChatGPT. We then generated 40 ChatGPT submissions. We used this data to evaluate eight publicly-available LLM-generated text detectors through the measures of accuracy, false positives, and resilience. The purpose of this work is to inform the community of what LLM-generated text detectors work and which do not, but also to provide insights for educators to better maintain academic integrity in their courses. Our results find that CopyLeaks is the most accurate LLM-generated text detector, GPTKit is the best LLM-generated text detector to reduce false positives, and GLTR is the most resilient LLM-generated text detector. We also express concerns over 52 false positives (of 114 human written submissions) generated by GPTZero. Finally, we note that all LLM-generated text detectors are less accurate with code, other languages (aside from English), and after the use of paraphrasing tools (like QuillBot). Modern detectors are still in need of improvements so that they can offer a full-proof solution to help maintain academic integrity. Further, their usability can be improved by facilitating a smooth API integration, providing clear documentation of their features and the understandability of their model(s), and supporting more commonly used languages.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: