Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

An Online Learning Analysis of Minimax Adaptive Control (2307.07268v2)

Published 14 Jul 2023 in eess.SY and cs.SY

Abstract: We present an online learning analysis of minimax adaptive control for the case where the uncertainty includes a finite set of linear dynamical systems. Precisely, for each system inside the uncertainty set, we define the model-based regret by comparing the state and input trajectories from the minimax adaptive controller against that of an optimal controller in hindsight that knows the true dynamics. We then define the total regret as the worst case model-based regret with respect to all models in the considered uncertainty set. We study how the total regret accumulates over time and its effect on the adaptation mechanism employed by the controller. Moreover, we investigate the effect of the disturbance on the growth of the regret over time and draw connections between robustness of the controller and the associated regret rate.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.