Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A $(3/2 + \varepsilon)$-Approximation for Multiple TSP with a Variable Number of Depots (2307.07180v1)

Published 14 Jul 2023 in cs.DS

Abstract: One of the most studied extensions of the famous Traveling Salesperson Problem (TSP) is the {\sc Multiple TSP}: a set of $m\geq 1$ salespersons collectively traverses a set of $n$ cities by $m$ non-trivial tours, to minimize the total length of their tours. This problem can also be considered to be a variant of {\sc Uncapacitated Vehicle Routing} where the objective function is the sum of all tour lengths. When all $m$ tours start from a single common \emph{depot} $v_0$, then the metric {\sc Multiple TSP} can be approximated equally well as the standard metric TSP, as shown by Frieze (1983). The {\sc Multiple TSP} becomes significantly harder to approximate when there is a \emph{set} $D$ of $d \geq 1$ depots that form the starting and end points of the $m$ tours. For this case only a $(2-1/d)$-approximation in polynomial time is known, as well as a $3/2$-approximation for \emph{constant} $d$ which requires a prohibitive run time of $n{\Theta(d)}$ (Xu and Rodrigues, \emph{INFORMS J. Comput.}, 2015). A recent work of Traub, Vygen and Zenklusen (STOC 2020) gives another approximation algorithm for {\sc Multiple TSP} running in time $n{\Theta(d)}$ and reducing the problem to approximating TSP. In this paper we overcome the $n{\Theta(d)}$ time barrier: we give the first efficient approximation algorithm for {\sc Multiple TSP} with a \emph{variable} number $d$ of depots that yields a better-than-2 approximation. Our algorithm runs in time $(1/\varepsilon){\mathcal O(d\log d)}\cdot n{\mathcal O(1)}$, and produces a $(3/2+\varepsilon)$-approximation with constant probability. For the graphic case, we obtain a deterministic $3/2$-approximation in time $2d\cdot n{\mathcal O(1)}$.ithm for metric {\sc Multiple TSP} with run time $n{\Theta(d)}$, which reduces the problem to approximating metric TSP.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.