Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximating Edit Distance in the Fully Dynamic Model (2307.07175v1)

Published 14 Jul 2023 in cs.DS

Abstract: The edit distance is a fundamental measure of sequence similarity, defined as the minimum number of character insertions, deletions, and substitutions needed to transform one string into the other. Given two strings of length at most $n$, simple dynamic programming computes their edit distance exactly in $O(n2)$ time, which is also the best possible (up to subpolynomial factors) assuming the Strong Exponential Time Hypothesis (SETH). The last few decades have seen tremendous progress in edit distance approximation, where the runtime has been brought down to subquadratic, near-linear, and even sublinear at the cost of approximation. In this paper, we study the dynamic edit distance problem, where the strings change dynamically as the characters are substituted, inserted, or deleted over time. Each change may happen at any location of either of the two strings. The goal is to maintain the (exact or approximate) edit distance of such dynamic strings while minimizing the update time. The exact edit distance can be maintained in $\tilde{O}(n)$ time per update (Charalampopoulos, Kociumaka, Mozes; 2020), which is again tight assuming SETH. Unfortunately, even with the unprecedented progress in edit distance approximation in the static setting, strikingly little is known regarding dynamic edit distance approximation. Utilizing the off-the-shelf tools, it is possible to achieve an $O(n{c})$-approximation in $n{0.5-c+o(1)}$ update time for any constant $c\in [0,\frac16]$. Improving upon this trade-off remains open. The contribution of this work is a dynamic $n{o(1)}$-approximation algorithm with amortized expected update time of $n{o(1)}$. In other words, we bring the approximation-ratio and update-time product down to $n{o(1)}$. Our solution utilizes an elegant framework of precision sampling tree for edit distance approximation (Andoni, Krauthgamer, Onak; 2010).

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.