Papers
Topics
Authors
Recent
Search
2000 character limit reached

Risk-Constrained Control of Mean-Field Linear Quadratic Systems

Published 14 Jul 2023 in eess.SY and cs.SY | (2307.07129v1)

Abstract: The risk-neutral LQR controller is optimal for stochastic linear dynamical systems. However, the classical optimal controller performs inefficiently in the presence of low-probability yet statistically significant (risky) events. The present research focuses on infinite-horizon risk-constrained linear quadratic regulators in a mean-field setting. We address the risk constraint by bounding the cumulative one-stage variance of the state penalty of all players. It is shown that the optimal controller is affine in the state of each player with an additive term that controls the risk constraint. In addition, we propose a solution independent of the number of players. Finally, simulations are presented to verify the theoretical findings.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.