Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Planar Disjoint Paths, Treewidth, and Kernels (2307.06792v1)

Published 13 Jul 2023 in cs.DS

Abstract: In the Planar Disjoint Paths problem, one is given an undirected planar graph with a set of $k$ vertex pairs $(s_i,t_i)$ and the task is to find $k$ pairwise vertex-disjoint paths such that the $i$-th path connects $s_i$ to $t_i$. We study the problem through the lens of kernelization, aiming at efficiently reducing the input size in terms of a parameter. We show that Planar Disjoint Paths does not admit a polynomial kernel when parameterized by $k$ unless coNP $\subseteq$ NP/poly, resolving an open problem by [Bodlaender, Thomass{\'e}, Yeo, ESA'09]. Moreover, we rule out the existence of a polynomial Turing kernel unless the WK-hierarchy collapses. Our reduction carries over to the setting of edge-disjoint paths, where the kernelization status remained open even in general graphs. On the positive side, we present a polynomial kernel for Planar Disjoint Paths parameterized by $k + tw$, where $tw$ denotes the treewidth of the input graph. As a consequence of both our results, we rule out the possibility of a polynomial-time (Turing) treewidth reduction to $tw= k{O(1)}$ under the same assumptions. To the best of our knowledge, this is the first hardness result of this kind. Finally, combining our kernel with the known techniques [Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh, Thilikos, JCTB'17; Schrijver, SICOMP'94] yields an alternative (and arguably simpler) proof that Planar Disjoint Paths can be solved in time $2{O(k2)}\cdot n{O(1)}$, matching the result of [Lokshtanov, Misra, Pilipczuk, Saurabh, Zehavi, STOC'20].

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.