Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

S-HR-VQVAE: Sequential Hierarchical Residual Learning Vector Quantized Variational Autoencoder for Video Prediction (2307.06701v3)

Published 13 Jul 2023 in cs.CV, cs.AI, and cs.LG

Abstract: We address the video prediction task by putting forth a novel model that combines (i) a novel hierarchical residual learning vector quantized variational autoencoder (HR-VQVAE), and (ii) a novel autoregressive spatiotemporal predictive model (AST-PM). We refer to this approach as a sequential hierarchical residual learning vector quantized variational autoencoder (S-HR-VQVAE). By leveraging the intrinsic capabilities of HR-VQVAE at modeling still images with a parsimonious representation, combined with the AST-PM's ability to handle spatiotemporal information, S-HR-VQVAE can better deal with major challenges in video prediction. These include learning spatiotemporal information, handling high dimensional data, combating blurry prediction, and implicit modeling of physical characteristics. Extensive experimental results on four challenging tasks, namely KTH Human Action, TrafficBJ, Human3.6M, and Kitti, demonstrate that our model compares favorably against state-of-the-art video prediction techniques both in quantitative and qualitative evaluations despite a much smaller model size. Finally, we boost S-HR-VQVAE by proposing a novel training method to jointly estimate the HR-VQVAE and AST-PM parameters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mohammad Adiban (5 papers)
  2. Kalin Stefanov (14 papers)
  3. Sabato Marco Siniscalchi (46 papers)
  4. Giampiero Salvi (18 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.