Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Runge--Kutta discontinuous Galerkin method with compact stencils for hyperbolic conservation laws (2307.06471v2)

Published 12 Jul 2023 in math.NA and cs.NA

Abstract: In this paper, we develop a new type of Runge--Kutta (RK) discontinuous Galerkin (DG) method for solving hyperbolic conservation laws. Compared with the original RKDG method, the new method features improved compactness and allows simple boundary treatment. The key idea is to hybridize two different spatial operators in an explicit RK scheme, utilizing local projected derivatives for inner RK stages and the usual DG spatial discretization for the final stage only. Limiters are applied only at the final stage for the control of spurious oscillations. We also explore the connections between our method and Lax--Wendroff DG schemes and ADER-DG schemes. Numerical examples are given to confirm that the new RKDG method is as accurate as the original RKDG method, while being more compact, for problems including two-dimensional Euler equations for compressible gas dynamics.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.