Papers
Topics
Authors
Recent
2000 character limit reached

SAGE -- A Tool for Optimal Deployments in Kubernetes Clusters

Published 12 Jul 2023 in cs.DC | (2307.06318v1)

Abstract: Cloud computing has brought a fundamental transformation in how organizations operate their applications, enabling them to achieve affordable high availability of services. Kubernetes has emerged as the preferred choice for container orchestration and service management across many Cloud computing platforms. The scheduler in Kubernetes plays a crucial role in determining the placement of newly deployed service containers. However, the default scheduler, while fast, often lacks optimization, leading to inefficient service placement or even deployment failures. This paper introduces SAGE, a tool for optimal solutions in Kubernetes clusters that can also assist the Kubernetes default scheduler and any other custom scheduler in application deployment. SAGE computes an optimal deployment plan based on the constraints of the application to be deployed and the available Cloud resources. We show the potential benefits of using SAGE by considering test cases with various characteristics. It turns out that SAGE surpasses other schedulers by comprehensively analyzing the application demand and cluster image. This ability allows it to better understand the needs of the pods, resulting in consistently optimal solutions across all scenarios. The accompanying material of this paper is publicly available at https://github.com/SAGE-Project/SAGE-Predeployer.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.