Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

The next gap in the subrank of 3-tensors (2307.06115v2)

Published 12 Jul 2023 in math.AG, cs.CC, math.CO, and quant-ph

Abstract: Recent works of Costa-Dalai, Christandl-Gesmundo-Zuiddam, Blatter-Draisma-Rupniewski, and Bri\"et-Christandl-Leigh-Shpilka-Zuiddam have investigated notions of discreteness and gaps in the possible values that asymptotic tensor ranks can take. In particular, it was shown that the asymptotic subrank and asymptotic slice rank of any nonzero 3-tensor is equal to 1, equal to 1.88, or at least 2 (over any field), and that the set of possible values of these parameters is discrete (in several regimes). We determine exactly the next gap, showing that the asymptotic subrank and asymptotic slice rank of any nonzero 3-tensor is equal to 1, equal to 1.88, equal to 2, or at least 2.68.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. Large spaces of matrices of bounded rank. The Quarterly Journal of Mathematics, 31(3):253–262, 1980. doi:10.1093/qmath/31.3.253.
  2. Matthew D. Atkinson. Primitive spaces of matrices of bounded rank. II. J. Austral. Math. Soc. Ser. A, 34(3):306–315, 1983. doi:10.1017/S1446788700023740.
  3. Discreteness of asymptotic tensor ranks, 2023. doi:10.48550/arXiv.2306.01718.
  4. Algebraic complexity theory, volume 315 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1997. doi:10.1007/978-3-662-03338-8.
  5. Countably many asymptotic tensor ranks, 2022. doi:10.48550/arxiv.2212.12219.
  6. A tensor restriction theorem over finite fields, 2022. doi:10.48550/arxiv.2211.12319.
  7. On Degeneration of Tensors and Algebras. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), volume 58, page 19:1–19:11, 2016. doi:10.4230/LIPIcs.MFCS.2016.19.
  8. A gap in the slice rank of k𝑘kitalic_k-tensors. J. Comb. Theory, Ser. A, 177:105335, 2021. doi:10.1016/j.jcta.2020.105335.
  9. Rank and border rank of Kronecker powers of tensors and Strassen’s laser method. computational complexity, 31(1):1–40, 2022.
  10. A Gap in the Subrank of Tensors, 2022. doi:10.48550/arXiv.2212.01668.
  11. Universal points in the asymptotic spectrum of tensors. J. Amer. Math. Soc., 36(1):31–79, 2023. doi:10.1090/jams/996.
  12. Matrix multiplication via arithmetic progressions. J. Symb. Comput., 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.
  13. Vector spaces of matrices of low rank. Adv. in Math., 70(2):135–155, 1988. doi:10.1016/0001-8708(88)90054-0.
  14. On Linear spaces of matrices of bounded rank, 2023. doi:10.48550/arXiv.2306.14428.
  15. Volker Strassen. The asymptotic spectrum of tensors. J. Reine Angew. Math., 384:102–152, 1988. doi:10.1515/crll.1988.384.102.
  16. Volker Strassen. Degeneration and complexity of bilinear maps: some asymptotic spectra. J. Reine Angew. Math., 413:127–180, 1991. doi:10.1515/crll.1991.413.127.
  17. Asymptotic spectra: Theory, applications and extensions, 2022. URL: https://staff.fnwi.uva.nl/j.zuiddam/papers/convexity.pdf.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.