Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unified Medical Image-Text-Label Contrastive Learning With Continuous Prompt (2307.05920v1)

Published 12 Jul 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Contrastive language-image Pre-training (CLIP) [13] can leverage large datasets of unlabeled Image-Text pairs, which have demonstrated impressive performance in various downstream tasks. Given that annotating medical data is time-consuming and laborious, Image-Text Pre-training has promising applications in exploiting large-scale medical image and radiology report datasets. However, medical Image-Text Pre-training faces several challenges, as follows: (1) Due to privacy concerns, the amount of available medical data is relatively small compared to natural data, leading to weaker generalization ability of the model. (2) Medical images are highly similar with only fine-grained differences in subtleties, resulting in a large number of false-negative sample pairs in comparison learning. (3) The hand-crafted Prompt usually differs from the natural medical image report, Subtle changes in wording can lead to significant differences in performance. In this paper, we propose a unified Image-Text-Label contrastive learning framework based on continuous prompts, with three main contributions. First, We unified the data of images, text, and labels, which greatly expanded the training data that the model could utilize. Second, we address the issue of data diversity and the impact of hand-crafted prompts on model performance by introducing continuous implicit prompts. Lastly, we propose a ImageText-Label contrastive Training to mitigate the problem of too many false-negative samples. We demonstrate through sufficient experiments that the Unified Medical Contrastive Learning (UMCL) framework exhibits excellent performance on several downstream tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube