Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

LogitMat : Zeroshot Learning Algorithm for Recommender Systems without Transfer Learning or Pretrained Models (2307.05680v1)

Published 6 Jul 2023 in cs.IR

Abstract: Recommender system is adored in the internet industry as one of the most profitable technologies. Unlike other sectors such as fraud detection in the Fintech industry, recommender system is both deep and broad. In recent years, many researchers start to focus on the cold-start problem of recommender systems. In spite of the large volume of research literature, the majority of the research utilizes transfer learning / meta learning and pretrained model to solve the problem. Although the researchers claim the effectiveness of the approaches, everyone of them does rely on extra input data from other sources. In 2021 and 2022, several zeroshot learning algorithm for recommender system such as ZeroMat, DotMat, PoissonMat and PowerMat were invented. They are the first batch of the algorithms that rely on no transfer learning or pretrained models to tackle the problem. In this paper, we follow this line and invent a new zeroshot learning algorithm named LogitMat. We take advantage of the Zipf Law property of the user item rating values and logistic regression model to tackle the cold-start problem and generate competitive results with other competing techniques. We prove in experiments that our algorithm is fast, robust and effective.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)