Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Embedded symmetric positive semi-definite machine-learned elements for reduced-order modeling in finite-element simulations with application to threaded fasteners (2307.05434v3)

Published 11 Jul 2023 in math.NA and cs.NA

Abstract: We present a machine-learning strategy for finite element analysis of solid mechanics wherein we replace complex portions of a computational domain with a data-driven surrogate. In the proposed strategy, we decompose a computational domain into an "outer" coarse-scale domain that we resolve using a finite element method (FEM) and an "inner" fine-scale domain. We then develop a machine-learned (ML) model for the impact of the inner domain on the outer domain. In essence, for solid mechanics, our machine-learned surrogate performs static condensation of the inner domain degrees of freedom. This is achieved by learning the map from (virtual) displacements on the inner-outer domain interface boundary to forces contributed by the inner domain to the outer domain on the same interface boundary. We consider two such mappings, one that directly maps from displacements to forces without constraints, and one that maps from displacements to forces by virtue of learning a symmetric positive semi-definite (SPSD) stiffness matrix. We demonstrate, in a simplified setting, that learning an SPSD stiffness matrix results in a coarse-scale problem that is well-posed with a unique solution. We present numerical experiments on several exemplars, ranging from finite deformations of a cube to finite deformations with contact of a fastener-bushing geometry. We demonstrate that enforcing an SPSD stiffness matrix is critical for accurate FEM-ML coupled simulations, and that the resulting methods can accurately characterize out-of-sample loading configurations with significant speedups over the standard FEM simulations.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.