Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

APRF: Anti-Aliasing Projection Representation Field for Inverse Problem in Imaging (2307.05270v1)

Published 11 Jul 2023 in eess.IV and cs.CV

Abstract: Sparse-view Computed Tomography (SVCT) reconstruction is an ill-posed inverse problem in imaging that aims to acquire high-quality CT images based on sparsely-sampled measurements. Recent works use Implicit Neural Representations (INRs) to build the coordinate-based mapping between sinograms and CT images. However, these methods have not considered the correlation between adjacent projection views, resulting in aliasing artifacts on SV sinograms. To address this issue, we propose a self-supervised SVCT reconstruction method -- Anti-Aliasing Projection Representation Field (APRF), which can build the continuous representation between adjacent projection views via the spatial constraints. Specifically, APRF only needs SV sinograms for training, which first employs a line-segment sampling module to estimate the distribution of projection views in a local region, and then synthesizes the corresponding sinogram values using center-based line integral module. After training APRF on a single SV sinogram itself, it can synthesize the corresponding dense-view (DV) sinogram with consistent continuity. High-quality CT images can be obtained by applying re-projection techniques on the predicted DV sinograms. Extensive experiments on CT images demonstrate that APRF outperforms state-of-the-art methods, yielding more accurate details and fewer artifacts. Our code will be publicly available soon.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.