Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

S2vNTM: Semi-supervised vMF Neural Topic Modeling (2307.04804v2)

Published 6 Jul 2023 in cs.CL and cs.AI

Abstract: LLM based methods are powerful techniques for text classification. However, the models have several shortcomings. (1) It is difficult to integrate human knowledge such as keywords. (2) It needs a lot of resources to train the models. (3) It relied on large text data to pretrain. In this paper, we propose Semi-Supervised vMF Neural Topic Modeling (S2vNTM) to overcome these difficulties. S2vNTM takes a few seed keywords as input for topics. S2vNTM leverages the pattern of keywords to identify potential topics, as well as optimize the quality of topics' keywords sets. Across a variety of datasets, S2vNTM outperforms existing semi-supervised topic modeling methods in classification accuracy with limited keywords provided. S2vNTM is at least twice as fast as baselines.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.