Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Camouflaged Object Detection with Feature Grafting and Distractor Aware (2307.03943v1)

Published 8 Jul 2023 in cs.CV

Abstract: The task of Camouflaged Object Detection (COD) aims to accurately segment camouflaged objects that integrated into the environment, which is more challenging than ordinary detection as the texture between the target and background is visually indistinguishable. In this paper, we proposed a novel Feature Grafting and Distractor Aware network (FDNet) to handle the COD task. Specifically, we use CNN and Transformer to encode multi-scale images in parallel. In order to better explore the advantages of the two encoders, we design a cross-attention-based Feature Grafting Module to graft features extracted from Transformer branch into CNN branch, after which the features are aggregated in the Feature Fusion Module. A Distractor Aware Module is designed to explicitly model the two possible distractors in the COD task to refine the coarse camouflage map. We also proposed the largest artificial camouflaged object dataset which contains 2000 images with annotations, named ACOD2K. We conducted extensive experiments on four widely used benchmark datasets and the ACOD2K dataset. The results show that our method significantly outperforms other state-of-the-art methods. The code and the ACOD2K will be available at https://github.com/syxvision/FDNet.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com