Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving Prototypical Visual Explanations with Reward Reweighing, Reselection, and Retraining (2307.03887v4)

Published 8 Jul 2023 in cs.LG, cs.AI, cs.CV, and cs.HC

Abstract: In recent years, work has gone into developing deep interpretable methods for image classification that clearly attributes a model's output to specific features of the data. One such of these methods is the Prototypical Part Network (ProtoPNet), which attempts to classify images based on meaningful parts of the input. While this architecture is able to produce visually interpretable classifications, it often learns to classify based on parts of the image that are not semantically meaningful. To address this problem, we propose the Reward Reweighing, Reselecting, and Retraining (R3) post-processing framework, which performs three additional corrective updates to a pretrained ProtoPNet in an offline and efficient manner. The first two steps involve learning a reward model based on collected human feedback and then aligning the prototypes with human preferences. The final step is retraining, which realigns the base features and the classifier layer of the original model with the updated prototypes. We find that our R3 framework consistently improves both the interpretability and the predictive accuracy of ProtoPNet and its variants.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.