Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A variant of the Raviart-Thomas method to handle smooth domains with straight-edged triangles (2307.03503v5)

Published 7 Jul 2023 in math.NA and cs.NA

Abstract: Several physical problems modeled by second-order elliptic equations can be efficiently solved using mixed finite elements of the Raviart-Thomas family RTk for N-simplexes, introduced in the seventies. In case Neumann conditions are prescribed on a curvilinear boundary, the normal component of the flux variable should preferably not take up values at nodes shifted to the boundary of the approximating polytope in the corresponding normal direction. This is because the method's accuracy downgrades, which was shown in previous papers by the first author et al. In that work an order-preserving technique was studied, based on a parametric version of these elements with curved simplexes. In this article an alternative with straight-edged triangles for two-dimensional problems is proposed. The key point of this method is a Petrov-Galerkin formulation of the mixed problem, in which the test-flux space is a little different from the shape-flux space. After describing the underlying variant of RTk we show that it gives rise to a uniformly stable and optimally convergent method, taking the Poisson equation as a model problem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.