Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Metropolitan Scale and Longitudinal Dataset of Anonymized Human Mobility Trajectories (2307.03401v1)

Published 7 Jul 2023 in cs.SI and physics.soc-ph

Abstract: Modeling and predicting human mobility trajectories in urban areas is an essential task for various applications. The recent availability of large-scale human movement data collected from mobile devices have enabled the development of complex human mobility prediction models. However, human mobility prediction methods are often trained and tested on different datasets, due to the lack of open-source large-scale human mobility datasets amid privacy concerns, posing a challenge towards conducting fair performance comparisons between methods. To this end, we created an open-source, anonymized, metropolitan scale, and longitudinal (90 days) dataset of 100,000 individuals' human mobility trajectories, using mobile phone location data. The location pings are spatially and temporally discretized, and the metropolitan area is undisclosed to protect users' privacy. The 90-day period is composed of 75 days of business-as-usual and 15 days during an emergency. To promote the use of the dataset, we will host a human mobility prediction data challenge (`HuMob Challenge 2023') using the human mobility dataset, which will be held in conjunction with ACM SIGSPATIAL 2023.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.