Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Weakly-supervised Contrastive Learning for Unsupervised Object Discovery (2307.03376v1)

Published 7 Jul 2023 in cs.CV

Abstract: Unsupervised object discovery (UOD) refers to the task of discriminating the whole region of objects from the background within a scene without relying on labeled datasets, which benefits the task of bounding-box-level localization and pixel-level segmentation. This task is promising due to its ability to discover objects in a generic manner. We roughly categorise existing techniques into two main directions, namely the generative solutions based on image resynthesis, and the clustering methods based on self-supervised models. We have observed that the former heavily relies on the quality of image reconstruction, while the latter shows limitations in effectively modeling semantic correlations. To directly target at object discovery, we focus on the latter approach and propose a novel solution by incorporating weakly-supervised contrastive learning (WCL) to enhance semantic information exploration. We design a semantic-guided self-supervised learning model to extract high-level semantic features from images, which is achieved by fine-tuning the feature encoder of a self-supervised model, namely DINO, via WCL. Subsequently, we introduce Principal Component Analysis (PCA) to localize object regions. The principal projection direction, corresponding to the maximal eigenvalue, serves as an indicator of the object region(s). Extensive experiments on benchmark unsupervised object discovery datasets demonstrate the effectiveness of our proposed solution. The source code and experimental results are publicly available via our project page at https://github.com/npucvr/WSCUOD.git.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.