Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distilled Pruning: Using Synthetic Data to Win the Lottery (2307.03364v3)

Published 7 Jul 2023 in cs.LG

Abstract: This work introduces a novel approach to pruning deep learning models by using distilled data. Unlike conventional strategies which primarily focus on architectural or algorithmic optimization, our method reconsiders the role of data in these scenarios. Distilled datasets capture essential patterns from larger datasets, and we demonstrate how to leverage this capability to enable a computationally efficient pruning process. Our approach can find sparse, trainable subnetworks (a.k.a. Lottery Tickets) up to 5x faster than Iterative Magnitude Pruning at comparable sparsity on CIFAR-10. The experimental results highlight the potential of using distilled data for resource-efficient neural network pruning, model compression, and neural architecture search.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.