Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Map-Free LiDAR-Based System for Autonomous Navigation in Vineyards (2307.03080v1)

Published 6 Jul 2023 in cs.RO

Abstract: Agricultural robots have the potential to increase production yields and reduce costs by performing repetitive and time-consuming tasks. However, for robots to be effective, they must be able to navigate autonomously in fields or orchards without human intervention. In this paper, we introduce a navigation system that utilizes LiDAR and wheel encoder sensors for in-row, turn, and end-row navigation in row structured agricultural environments, such as vineyards. Our approach exploits the simple and precise geometrical structure of plants organized in parallel rows. We tested our system in both simulated and real environments, and the results demonstrate the effectiveness of our approach in achieving accurate and robust navigation. Our navigation system achieves mean displacement errors from the center line of 0.049 m and 0.372 m for in-row navigation in the simulated and real environments, respectively. In addition, we developed an end-row points detection that allows end-row navigation in vineyards, a task often ignored by most works.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. R. Bertoglio, C. Corbo, F. M. Renga, and M. Matteucci, “The digital agricultural revolution: a bibliometric analysis literature review,” IEEE Access, vol. 9, pp. 134 762–134 782, 2021.
  2. R. Guzmán, J. Ariño, R. Navarro, C. Lopes, J. Graça, M. Reyes, A. Barriguinha, and R. Braga, “Autonomous hybrid gps/reactive navigation of an unmanned ground vehicle for precision viticulture-vinbot,” Intervitis Interfructa Hortitechnica-Technology for wine, juice and special crops, 2016.
  3. F. N. Dos Santos, H. Sobreira, D. Campos, R. Morais, A. Paulo Moreira, and O. Contente, “Towards a reliable robot for steep slope vineyards monitoring,” Journal of Intelligent & Robotic Systems, vol. 83, pp. 429–444, 2016.
  4. P. Bernad, P. Lepej, Č. Rozman, K. Pažek, and J. Rakun, “An evaluation of three different infield navigation algorithms,” in Agricultural Robots-Fundamentals and Applications, J. Zhou and B. Zhang, Eds.   IntechOpen, 2019, ch. 3.
  5. F. Rovira-Más, V. Saiz-Rubio, and A. Cuenca-Cuenca, “Augmented perception for agricultural robots navigation,” IEEE Sensors Journal, vol. 21, no. 10, pp. 11 712–11 727, 2020.
  6. D. Mengoli, R. Tazzari, and L. Marconi, “Autonomous robotic platform for precision orchard management: Architecture and software perspective,” in 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor).   IEEE, 2020, pp. 303–308.
  7. D. Mengoli, A. Eusebi, S. Rossi, R. Tazzari, and L. Marconi, “Robust autonomous row-change maneuvers for agricultural robotic platform,” in 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor).   IEEE, 2021, pp. 390–395.
  8. D. Aghi, V. Mazzia, and M. Chiaberge, “Local motion planner for autonomous navigation in vineyards with a rgb-d camera-based algorithm and deep learning synergy,” Machines, vol. 8, no. 2, p. 27, 2020.
  9. J. Bier, T. Friedel, J. Barthel, E. Bulovas, and L. Tuschla, “BETEIGEUZE - KAMARO,” pp. 17–22, 2022. [Online]. Available: https://www.fieldrobot.com/event/wp-content/uploads/2022/02/Proceedings˙FRE2021.pdf
  10. A. Mandow, J. L. Martinez, J. Morales, J. L. Blanco, A. Garcia-Cerezo, and J. Gonzalez, “Experimental kinematics for wheeled skid-steer mobile robots,” in 2007 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2007, pp. 1222–1227.
  11. R. B. Rusu, “Semantic 3d object maps for everyday manipulation in human living environments,” Ph.D. dissertation, Computer Science department, Technische Universitaet Muenchen, Germany, October 2009.
  12. R. Bertoglio, G. Fontana, M. Matteucci, D. Facchinetti, M. Berducat, and D. Boffety, “On the design of the agri-food competition for robot evaluation (acre),” in 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC).   IEEE, 2021, pp. 161–166.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.