Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Density-Sensitive Algorithms for $(Δ+ 1)$-Edge Coloring (2307.02415v2)

Published 5 Jul 2023 in cs.DS

Abstract: Vizing's theorem asserts the existence of a $(\Delta+1)$-edge coloring for any graph $G$, where $\Delta = \Delta(G)$ denotes the maximum degree of $G$. Several polynomial time $(\Delta+1)$-edge coloring algorithms are known, and the state-of-the-art running time (up to polylogarithmic factors) is $\tilde{O}(\min{m \cdot \sqrt{n}, m \cdot \Delta})$, by Gabow et al.\ from 1985, where $n$ and $m$ denote the number of vertices and edges in the graph, respectively. (The $\tilde{O}$ notation suppresses polylogarithmic factors.) Recently, Sinnamon shaved off a polylogarithmic factor from the time bound of Gabow et al. The {arboricity} $\alpha = \alpha(G)$ of a graph $G$ is the minimum number of edge-disjoint forests into which its edge set can be partitioned, and it is a measure of the graph's "uniform density". While $\alpha \le \Delta$ in any graph, many natural and real-world graphs exhibit a significant separation between $\alpha$ and $\Delta$. In this work we design a $(\Delta+1)$-edge coloring algorithm with a running time of $\tilde{O}(\min{m \cdot \sqrt{n}, m \cdot \Delta})\cdot \frac{\alpha}{\Delta}$, thus improving the longstanding time barrier by a factor of $\frac{\alpha}{\Delta}$. In particular, we achieve a near-linear runtime for bounded arboricity graphs (i.e., $\alpha = \tilde{O}(1)$) as well as when $\alpha = \tilde{O}(\frac{\Delta}{\sqrt{n}})$. Our algorithm builds on Sinnamon's algorithm, and can be viewed as a density-sensitive refinement of it.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sayan Bhattacharya (43 papers)
  2. Martín Costa (11 papers)
  3. Nadav Panski (3 papers)
  4. Shay Solomon (55 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com