Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-IRS-Enabled Integrated Sensing and Communications (2307.02242v2)

Published 5 Jul 2023 in cs.IT, eess.SP, and math.IT

Abstract: This paper studies a multi-intelligent-reflecting-surface-(IRS)-enabled integrated sensing and communications (ISAC) system, in which multiple IRSs are installed to help the base station (BS) provide ISAC services at separate line-of-sight (LoS) blocked areas. We focus on the scenario with semi-passive uniform linear array (ULA) IRSs for sensing, in which each IRS is integrated with dedicated sensors for processing echo signals, and each IRS simultaneously serves one sensing target and multiple communication users (CUs) in its coverage area. In particular, we suppose that the BS sends combined information and dedicated sensing signals for ISAC. Two cases with point and extended targets are considered, in which each IRS aims to estimate the direction-of-arrival (DoA) of the corresponding target and the complete target response matrix, respectively. Under this setup, we first derive the closed-form Cram{\'e}r-Rao bounds (CRBs) for parameters estimation under the two target models. For the point target case, the CRB for DoA estimation is shown to be inversely proportional to the cubic of the number of sensors at each IRS, while for the extended target case, the CRB for target response matrix estimation is proportional to the number of IRS sensors. Next, we consider two different types of CU receivers that can and cannot cancel the interference from dedicated sensing signals prior to information decoding. To achieve fair and optimized sensing performance, we minimize the maximum CRB at all IRSs for the two target cases, via jointly optimizing the transmit beamformers at the BS and the reflective beamformers at the multiple IRSs, subject to the minimum signal-to-interference-plus-noise ratio (SINR) constraints at individual CUs, the maximum transmit power constraint at the BS, and the unit-modulus constraints at the multiple IRSs.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.