Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hybrid additive modeling with partial dependence for supervised regression and dynamical systems forecasting (2307.02229v2)

Published 5 Jul 2023 in cs.LG

Abstract: Learning processes by exploiting restricted domain knowledge is an important task across a plethora of scientific areas, with more and more hybrid training methods additively combining data-driven and model-based approaches. Although the obtained models are more accurate than purely data-driven models, the optimization process usually comes with sensitive regularization constraints. Furthermore, while such hybrid methods have been tested in various scientific applications, they have been mostly tested on dynamical systems, with only limited study about the influence of each model component on global performance and parameter identification. In this work, we introduce a new hybrid training approach based on partial dependence, which removes the need for intricate regularization. Moreover, we assess the performance of hybrid modeling against traditional machine learning methods on standard regression problems. We compare, on both synthetic and real regression problems, several approaches for training such hybrid models. We focus on hybrid methods that additively combine a parametric term with a machine learning term and investigate model-agnostic training procedures. Therefore, experiments are carried out with different types of machine learning models, including tree-based models and artificial neural networks. We also extend our partial dependence optimization process for dynamical systems forecasting and compare it to existing schemes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.