Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spherical Basis Functions in Hardy Spaces with Localization Constraints (2307.02220v1)

Published 5 Jul 2023 in math.NA and cs.NA

Abstract: Subspaces obtained by the orthogonal projection of locally supported square-integrable vector fields onto the Hardy spaces $H_+(\mathbb{S})$ and $H_-(\mathbb{S})$, respectively, play a role in various inverse potential field problems since they characterize the uniquely recoverable components of the underlying sources. Here, we consider approximation in these subspaces by a particular set of spherical basis functions. Error bounds are provided along with further considerations on norm-minimizing vector fields that satisfy the underlying localization constraint. The new aspect here is that the used spherical basis functions are themselves members of the subspaces under consideration.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Bounded extremal and Cauchy-Laplace problems on the sphere and shell. J. Fourier Anal. Appl., 16:177–203, 2010.
  2. Foundations of Geomagnetism. Cambridge University Press, 1996.
  3. Decomposition of L2superscript𝐿2{L}^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-vector fields on Lipschitz surfaces: characterization via null-spaces of the scalar potential. SIAM J. Math. Anal., 53:4096–4117, 2021.
  4. Sobolev Algebras on Lie Groups and Riemannian Manifolds. Am. J. Math., 123(2):283–342, 2001.
  5. A.R. Edmonds. Angular Momentum in Quantum Mechanics. Princeton University Press, 1957.
  6. Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal., 159:323–368, 1998.
  7. W. Freeden and C. Gerhards. Poloidal and toroidal field modeling in terms of locally supported vector wavelets. Math. Geosc., 42:818–838, 2010.
  8. W. Freeden and C. Gerhards. Geomathematically Oriented Potential Theory. Pure and Applied Mathematics. Chapman & Hall/CRC, 2012.
  9. W. Freeden and M. Schreiner. Local multiscale modeling of geoidal undulations from deflections of the vertical. J. Geod., 78:641–651, 2006.
  10. W. Freeden and M. Schreiner. Spherical Functions of Mathematical Geosciences. Springer, 2009.
  11. C. Gerhards. On the unique reconstruction of induced spherical magnetizations. Inverse Problems, 32:015002, 2016.
  12. C. Gerhards. On the reconstruction of inducing dipole directions and susceptibilities from knowledge of the magnetic field on a sphere. Inv. Probl. Sci. Engin., 27:37–60, 2019.
  13. Relation between Hardy components for locally supported vector fields on the sphere. J. Math. Anal. Appl., 517:126572, 2023.
  14. Analysis of lithospheric magnetization in vector spherical harmonics. Geophys. J. Int., 187:99–117, 2011.
  15. Application of vector spherical harmonics to the magnetization of Mars’ crust. Geophys. Res. Lett., 49:e2021GL095913, 2022.
  16. Numerical integration on the sphere. In W. Freeden, M.Z. Nashed, and T. Sonar, editors, Handbook of Geomathematics. Springer, 2nd edition, 2015.
  17. S. Hubbert and J. Jäger. Generalised Wendland functions for the sphere. Adv. Comp. Math., 49:3, 2023.
  18. Continuous and discrete least-square approximation by radial basis functions on spheres. J. Approx. Theory, 143:124–133, 2006.
  19. Zooming from global to local: a multiscale RBF approach. Adv. Comput. Math., 43:581–606, 2017.
  20. Multiscale analysis on sobolev spaces on the sphere. SIAM J. Num. Anal., 48:2065–2090, 2010.
  21. V. Lesur and F. Vervelidou. Retrieving lithospheric magnetization distribution from magnetic field models. Geophys. J. Int., 220:981–995, 2020.
  22. Fast inversion of magnetic field maps of unidirectional planar geological magnetization. J. Geophys. Res.: Solid Earth, 118:1–30, 2013.
  23. C. Mayer and T. Maier. Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys. J. Int., 167:1188–1203, 2006.
  24. Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput., 74:743–763, 2005.
  25. Separation of the magnetic field into external and internal parts. Space Sci. Rev., 152:135–157, 2010.
  26. A. Plattner and F.J. Simons. Potential field estimation from satellite data using scalar and vector Slepian functions. In W. Freeden, M.Z. Nashed, and T Sonar, editors, Handbook of Geomathematics. Springer, 2nd edition, 2015.
  27. A. Plattner and F.J. Simons. Internal and external potential-field estimation from regional vector data at varying satellite altitude. Geophys. J. Int., 211:207–238, 2017.
  28. A. Townsend and H. Wendland. Multiscale analysis in sobolev spaces on bounded domains with zero boundary values. IMA J. Num. Anal., 33:1095–1114, 2013.
  29. G. Verchota. Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal., 39:572–611, 1984.
  30. F. Vervelidou and V. Lesur. Unveiling Earth’s hidden magnetization. Geophys. Res. Lett., 45:283–292, 2018.
  31. On the accuracy of paleopole estimations from magnetic field measurements. Geophys. J. Int., 211:1669–1678, 2017.
  32. H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comp. Math., 4:389–396, 1995.
  33. H. Wendland. Scattered Data Approximation. Cambridge University Press, 2005.

Summary

We haven't generated a summary for this paper yet.