Papers
Topics
Authors
Recent
2000 character limit reached

Convergence Analysis for Restarted Anderson Mixing and Beyond (2307.02062v1)

Published 5 Jul 2023 in math.NA and cs.NA

Abstract: Anderson mixing (AM) is a classical method that can accelerate fixed-point iterations by exploring historical information. Despite the successful application of AM in scientific computing, the theoretical properties of AM are still under exploration. In this paper, we study the restarted version of the Type-I and Type-II AM methods, i.e., restarted AM. With a multi-step analysis, we give a unified convergence analysis for the two types of restarted AM and justify that the restarted Type-II AM can locally improve the convergence rate of the fixed-point iteration. Furthermore, we propose an adaptive mixing strategy by estimating the spectrum of the Jacobian matrix. If the Jacobian matrix is symmetric, we develop the short-term recurrence forms of restarted AM to reduce the memory cost. Finally, experimental results on various problems validate our theoretical findings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.