Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Integrating Random Forests and Generalized Linear Models for Improved Accuracy and Interpretability (2307.01932v2)

Published 4 Jul 2023 in stat.ME, cs.AI, cs.LG, and stat.ML

Abstract: Random forests (RFs) are among the most popular supervised learning algorithms due to their nonlinear flexibility and ease-of-use. However, as black box models, they can only be interpreted via algorithmically-defined feature importance methods, such as Mean Decrease in Impurity (MDI), which have been observed to be highly unstable and have ambiguous scientific meaning. Furthermore, they can perform poorly in the presence of smooth or additive structure. To address this, we reinterpret decision trees and MDI as linear regression and $R2$ values, respectively, with respect to engineered features associated with the tree's decision splits. This allows us to combine the respective strengths of RFs and generalized linear models in a framework called RF+, which also yields an improved feature importance method we call MDI+. Through extensive data-inspired simulations and real-world datasets, we show that RF+ improves prediction accuracy over RFs and that MDI+ outperforms popular feature importance measures in identifying signal features, often yielding more than a 10% improvement over its closest competitor. In case studies on drug response prediction and breast cancer subtyping, we further show that MDI+ extracts well-established genes with significantly greater stability compared to existing feature importance measures.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.