Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A hybrid machine learning framework for clad characteristics prediction in metal additive manufacturing (2307.01872v1)

Published 4 Jul 2023 in cs.LG and cs.CE

Abstract: During the past decade, metal additive manufacturing (MAM) has experienced significant developments and gained much attention due to its ability to fabricate complex parts, manufacture products with functionally graded materials, minimize waste, and enable low-cost customization. Despite these advantages, predicting the impact of processing parameters on the characteristics of an MAM printed clad is challenging due to the complex nature of MAM processes. Machine learning (ML) techniques can help connect the physics underlying the process and processing parameters to the clad characteristics. In this study, we introduce a hybrid approach which involves utilizing the data provided by a calibrated multi-physics computational fluid dynamic (CFD) model and experimental research for preparing the essential big dataset, and then uses a comprehensive framework consisting of various ML models to predict and understand clad characteristics. We first compile an extensive dataset by fusing experimental data into the data generated using the developed CFD model for this study. This dataset comprises critical clad characteristics, including geometrical features such as width, height, and depth, labels identifying clad quality, and processing parameters. Second, we use two sets of processing parameters for training the ML models: machine setting parameters and physics-aware parameters, along with versatile ML models and reliable evaluation metrics to create a comprehensive and scalable learning framework for predicting clad geometry and quality. This framework can serve as a basis for clad characteristics control and process optimization. The framework resolves many challenges of conventional modeling methods in MAM by solving t the issue of data scarcity using a hybrid approach and introducing an efficient, accurate, and scalable platform for clad characteristics prediction and optimization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (79)
  1. doi:10.1007/s40684-020-00302-7.
  2. doi:10.1007/s00170-020-05569-3.
  3. doi:10.1016/j.bushor.2011.11.003.
  4. doi:10.1016/j.addma.2020.101538.
  5. doi:10.1007/978-1-4939-2113-3.
  6. doi:10.1007/s12206-017-0239-5.
  7. doi:10.3390/jmmp2030061.
  8. doi:10.1016/j.optlastec.2016.07.001.
  9. doi:10.1016/j.ceramint.2017.03.085.
  10. doi:10.1108/RPJ-04-2018-0088.
  11. doi:10.2351/1.1585087.
  12. doi:10.1016/j.addma.2016.10.007.
  13. doi:10.1016/j.msea.2009.02.019.
  14. doi:10.1016/j.addma.2014.09.004.
  15. doi:10.1088/0022-3727/39/12/022.
  16. doi:10.1115/DETC2016-59644.
  17. doi:10.1016/j.optlaseng.2019.105950.
  18. doi:10.1007/s40430-019-1784-x.
  19. doi:10.1016/j.optlastec.2017.06.026.
  20. doi:10.1007/s12540-019-00355-7.
  21. doi:10.1016/j.optlastec.2017.10.015.
  22. doi:10.2351/1.5098044.
  23. doi:10.1016/j.promfg.2019.06.214.
  24. doi:10.1016/j.asoc.2007.05.007.
  25. doi:10.1016/j.asoc.2012.04.013.
  26. doi:10.1007/s00170-008-1453-1.
  27. doi:10.1007/s00170-019-04596-z.
  28. doi:10.1016/j.jmrt.2022.11.137.
  29. doi:10.1016/j.addma.2022.102817.
  30. doi:10.1016/j.addma.2019.03.013.
  31. doi:10.1021/acsami.9b02898.
  32. doi:10.1016/j.apmt.2021.101123.
  33. doi:10.3390/ma11030444.
  34. doi:10.1115/1.4052245.
  35. doi:10.1007/s12541-018-0126-8.
  36. doi:10.1007/s10845-012-0682-1.
  37. doi:10.1016/j.procir.2017.12.204.
  38. doi:10.1007/s00466-020-01952-9.
  39. doi:10.1016/j.matdes.2011.01.058.
  40. doi:10.1007/s00170-013-4796-1.
  41. doi:10.1016/j.cma.2019.112734.
  42. doi:10.1007/s00170-021-06640-3.
  43. doi:10.1007/s11837-020-04438-4.
  44. doi:10.3390/jmmp7030105.
  45. doi:10.1016/j.pmatsci.2017.10.001.
  46. doi:10.1016/j.pmatsci.2020.100703.
  47. doi:10.1016/j.jmapro.2015.06.026.
  48. doi:10.1016/B978-0-12-809633-8.20473-1.
  49. doi:10.1016/j.proeng.2012.09.545.
  50. doi:10.1002/bjs.10895.
  51. doi:10.1016/B978-0-12-811318-9.00027-2.
  52. doi:10.1007/b100712.
  53. doi:10.11919/j.issn.1002-0829.215044.
  54. doi:10.1007/s11749-016-0481-7.
  55. doi:10.3389/fnbot.2013.00021.
  56. doi:10.1109/AICI.2010.82.
  57. doi:10.21037/atm.2016.03.37.
  58. doi:10.1007/978-3-642-38652-7.
  59. doi:10.11613/BM.2014.003.
  60. doi:10.1109/TNNLS.2022.3229161.
  61. doi:10.1038/323533a0.
  62. doi:10.48550/arXiv.1412.6980.
  63. doi:10.1145/2623330.2623612.
  64. doi:10.1007/s10107-016-1030-6.
  65. doi:10.48550/arXiv.1311.6529.
  66. doi:10.48550/arXiv.1407.0202.
  67. doi:10.21817/indjcse/2022/v13i4/221304179.
  68. doi:10.1201/9781315139470.
  69. doi:10.4310/SII.2009.v2.n3.a8.
  70. doi:10.1023/B:STCO.0000035301.49549.88.
  71. doi:10.48550/arXiv.1302.4245.
  72. doi:10.1016/j.jmp.2018.03.001.
  73. doi:10.18637/jss.v033.i01.
  74. doi:10.1109/JSTSP.2007.910971.
  75. doi:10.48550/arXiv.1806.06850.
  76. doi:10.1016/j.jallcom.2019.02.121.
  77. doi:10.1080/09506608.2019.1709354.
  78. doi:10.1162/15324430260185628.
  79. doi:10.1109/TNNLS.2019.2957109.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.