Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Linear-time Computation of DAWGs, Symmetric Indexing Structures, and MAWs for Integer Alphabets (2307.01428v1)

Published 4 Jul 2023 in cs.DS and cs.FL

Abstract: The directed acyclic word graph (DAWG) of a string $y$ of length $n$ is the smallest (partial) DFA which recognizes all suffixes of $y$ with only $O(n)$ nodes and edges. In this paper, we show how to construct the DAWG for the input string $y$ from the suffix tree for $y$, in $O(n)$ time for integer alphabets of polynomial size in $n$. In so doing, we first describe a folklore algorithm which, given the suffix tree for $y$, constructs the DAWG for the reversed string of $y$ in $O(n)$ time. Then, we present our algorithm that builds the DAWG for $y$ in $O(n)$ time for integer alphabets, from the suffix tree for $y$. We also show that a straightforward modification to our DAWG construction algorithm leads to the first $O(n)$-time algorithm for constructing the affix tree of a given string $y$ over an integer alphabet. Affix trees are a text indexing structure supporting bidirectional pattern searches. We then discuss how our constructions can lead to linear-time algorithms for building other text indexing structures, such as linear-size suffix tries and symmetric CDAWGs in linear time in the case of integer alphabets. As a further application to our $O(n)$-time DAWG construction algorithm, we show that the set $\mathsf{MAW}(y)$ of all minimal absent words (MAWs) of $y$ can be computed in optimal, input- and output-sensitive $O(n + |\mathsf{MAW}(y)|)$ time and $O(n)$ working space for integer alphabets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. doi:10.1016/S0196-6774(03)00087-7.
  2. doi:10.1137/S0097539702402354.
  3. doi:10.1007/s00224-006-1198-x.
  4. doi:10.1007/3-540-48523-6_23.
  5. doi:10.1186/1471-2105-9-167. URL https://doi.org/10.1186/1471-2105-9-167
  6. doi:10.1016/j.ipl.2010.05.008. URL https://doi.org/10.1016/j.ipl.2010.05.008
  7. doi:10.1093/bioinformatics/btv189. URL https://doi.org/10.1093/bioinformatics/btv189
  8. doi:10.1016/j.ic.2018.06.002.
  9. doi:10.1186/s13015-017-0094-z. URL https://doi.org/10.1186/s13015-017-0094-z
  10. doi:10.1093/bioinformatics/btx209. URL https://doi.org/10.1093/bioinformatics/btx209
  11. doi:10.1186/s12859-014-0388-9.
  12. doi:10.1007/978-3-319-32152-3_23.
  13. doi:10.1007/978-3-030-32686-9_11.
  14. doi:10.1007/978-3-030-61792-9_16.
  15. doi:10.2197/ipsjjip.29.1.
  16. doi:10.4230/LIPIcs.CPM.2022.27.
  17. doi:10.4230/LIPIcs.MFCS.2016.38.
  18. arXiv:1302.3347. URL http://arxiv.org/abs/1302.3347
  19. doi:10.1142/S0129626496000054.
  20. arXiv:2301.04295, doi:10.48550/arXiv.2301.04295.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.