Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Generic Solutions for Multiphase Transport in Porous Media via the Flux Functions Operator (2307.01354v1)

Published 3 Jul 2023 in physics.comp-ph and cs.LG

Abstract: Traditional numerical schemes for simulating fluid flow and transport in porous media can be computationally expensive. Advances in machine learning for scientific computing have the potential to help speed up the simulation time in many scientific and engineering fields. DeepONet has recently emerged as a powerful tool for accelerating the solution of partial differential equations (PDEs) by learning operators (mapping between function spaces) of PDEs. In this work, we learn the mapping between the space of flux functions of the Buckley-Leverett PDE and the space of solutions (saturations). We use Physics-Informed DeepONets (PI-DeepONets) to achieve this mapping without any paired input-output observations, except for a set of given initial or boundary conditions; ergo, eliminating the expensive data generation process. By leveraging the underlying physical laws via soft penalty constraints during model training, in a manner similar to Physics-Informed Neural Networks (PINNs), and a unique deep neural network architecture, the proposed PI-DeepONet model can predict the solution accurately given any type of flux function (concave, convex, or non-convex) while achieving up to four orders of magnitude improvements in speed over traditional numerical solvers. Moreover, the trained PI-DeepONet model demonstrates excellent generalization qualities, rendering it a promising tool for accelerating the solution of transport problems in porous media.

Citations (2)

Summary

We haven't generated a summary for this paper yet.