Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthesizing Control Laws from Data using Sum-of-Squares Optimization (2307.01089v1)

Published 3 Jul 2023 in math.OC, cs.SY, eess.SY, and math.DS

Abstract: The control Lyapunov function (CLF) approach to nonlinear control design is well established. Moreover, when the plant is control affine and polynomial, sum-of-squares (SOS) optimization can be used to find a polynomial controller as a solution to a semidefinite program. This letter considers the use of data-driven methods to design a polynomial controller by leveraging Koopman operator theory, CLFs, and SOS optimization. First, Extended Dynamic Mode Decomposition (EDMD) is used to approximate the Lie derivative of a given CLF candidate with polynomial lifting functions. Then, the polynomial Koopman model of the Lie derivative is used to synthesize a polynomial controller via SOS optimization. The result is a flexible data-driven method that skips the intermediary process of system identification and can be applied widely to control problems. The proposed approach is used to successfully synthesize a controller to stabilize an inverted pendulum on a cart.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. J. Anderson and A. Papachristodoulou, “Advances in computational Lyapunov analysis using sum-of-squares programming.” Discrete & Continuous Dynamical Systems-Series B, vol. 20, no. 8, 2015.
  2. A. Papachristodoulou and S. Prajna, “A tutorial on sum of squares techniques for systems analysis,” in Proceedings of the 2005, American Control Conference, 2005.   IEEE, 2005, pp. 2686–2700.
  3. Z. Jarvis-Wloszek, R. Feeley, W. Tan, K. Sun, and A. Packard, “Some controls applications of sum of squares programming,” in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).   IEEE, 2003.
  4. A. Majumdar, A. A. Ahmadi, and R. Tedrake, “Control design along trajectories with sums of squares programming,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, may 2013.
  5. L. Yang, H. Dai, A. Amice, and R. Tedrake, “Suboptimal controller synthesis for cart-poles and quadrotors via sums-of-squares,” arXiv:2304.12533 [cs.RO], 2023.
  6. A. Gahlawat and M. M. Peet, “A convex sum-of-squares approach to analysis, state feedback and output feedback control of parabolic PDEs,” IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 1636–1651, apr 2017.
  7. S. E. Otto and C. W. Rowley, “Koopman operators for estimation and control of dynamical systems,” Annu. Rev. Control, Robot., Auton. Syst., vol. 4, no. 1, pp. 59–87, 2021.
  8. S. L. Brunton, M. Budisić, E. Kaiser, and J. N. Kutz, “Modern koopman theory for dynamical systems,” SIAM Review, vol. 64, no. 2, pp. 229–340, 2022.
  9. B. O. Koopman, “Hamiltonian systems and transformations in Hilbert space,” Proc. Nat. Acad. Sci., vol. 17, no. 5, pp. 315–318, 1931.
  10. I. Mezić, “Spectrum of the Koopman operator, spectral expansions in functional spaces, and state-space geometry,” J. Nonlinear Sci., vol. 30, no. 5, pp. 2091–2145, 2019.
  11. M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven approximation of the Koopman operator: Extending dynamic mode decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp. 1307–1346, 2015.
  12. M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control,” Automatica, vol. 93, pp. 149–160, 2018.
  13. I. Abraham and T. D. Murphey, “Active learning of dynamics for data-driven control using Koopman operators,” IEEE Trans. Robot., vol. 35, no. 5, pp. 1071–1083, 2019.
  14. J. Moyalan, H. Choi, Y. Chen, and U. Vaidya, “Data-driven optimal control via linear transfer operators: A convex approach,” Automatica, vol. 150, p. 110841, 2023.
  15. K. G. Murty and S. N. Kabadi, “Some NP-complete problems in quadratic and nonlinear programming,” Mathematical Programming, vol. 39, pp. 117–129, 1987.
  16. J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508).   IEEE, 2004, pp. 284–289.
  17. D. Bruder, X. Fu, and R. Vasudevan, “Advantages of bilinear Koopman realizations for the modeling and control of systems with unknown dynamics,” IEEE Trans. Robot. Autom., vol. 6, no. 3, pp. 4369–4376, 2021.
  18. J. J. Bramburger and G. Fantuzzi, “Auxiliary functions as Koopman observables: Data-driven polynomial optimization for dynamical systems,” arXiv preprint arXiv:2303.01483, 2023.
  19. T. Maeba, M. Deng, A. Yanou, and T. Henmi, “Swing-up controller design for inverted pendulum by using energy control method based on lyapunov function,” in Proceedings of the 2010 International Conference on Modelling, Identification and Control.   IEEE, 2010, pp. 768–773.
  20. K. Kaheman, U. Fasel, J. J. Bramburger, B. Strom, J. N. Kutz, and S. L. Brunton, “The experimental multi-arm pendulum on a cart: A benchmark system for chaos, learning, and control,” arXiv preprint arXiv:2205.06231, 2022.
  21. S. P. Bhat and D. S. Bernstein, “A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon,” Systems & Control Letters, vol. 39, no. 1, pp. 63–70, 2000.
  22. C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “Quaternion-based hybrid control for robust global attitude tracking,” IEEE Transactions on Automatic Control, vol. 56, no. 11, pp. 2555–2566, 2011.
  23. U. V. Kalabić, R. Gupta, S. Di Cairano, A. M. Bloch, and I. V. Kolmanovsky, “MPC on manifolds with an application to the control of spacecraft attitude on S⁢O⁢(3)𝑆𝑂3SO(3)italic_S italic_O ( 3 ),” Automatica, vol. 76, pp. 293–300, 2017.
  24. H. Kushner, “Stochastic stability and control,” Mathematics in Science and Engineering. New York: Academic Press, vol. 33, 1967.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com