Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Scenario-Based Motion Planning with Bounded Probability of Collision (2307.01070v1)

Published 3 Jul 2023 in cs.RO

Abstract: Robots will increasingly operate near humans that introduce uncertainties in the motion planning problem due to their complex nature. Typically, chance constraints are introduced in the planner to optimize performance while guaranteeing probabilistic safety. However, existing methods do not consider the actual probability of collision for the planned trajectory, but rather its marginalization, that is, the independent collision probabilities for each planning step and/or dynamic obstacle, resulting in conservative trajectories. To address this issue, we introduce a novel real-time capable method termed Safe Horizon MPC, that explicitly constrains the joint probability of collision with all obstacles over the duration of the motion plan. This is achieved by reformulating the chance-constrained planning problem using scenario optimization and predictive control. Our method is less conservative than state-of-the-art approaches, applicable to arbitrary probability distributions of the obstacles' trajectories, computationally tractable and scalable. We demonstrate our proposed approach using a mobile robot and an autonomous vehicle in an environment shared with humans.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. J. F. P. Kooij, F. Flohr, E. A. I. Pool, and D. M. Gavrila, “Context-Based Path Prediction for Targets with Switching Dynamics,” Int. J. of Computer Vision, vol. 127, no. 3, pp. 239–262, Mar. 2019.
  2. H. Zhu and J. Alonso-Mora, “Chance-Constrained Collision Avoidance for MAVs in Dynamic Environments,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 776–783, Apr. 2019.
  3. B. Luders, M. Kothari, and J. How, “Chance Constrained RRT for Probabilistic Robustness to Environmental Uncertainty,” in Proc. AIAA Guid., Navigat. Control Conf.,, Toronto, Ontario, Canada, Aug. 2010.
  4. L. Blackmore, Hui Li, and B. Williams, “A probabilistic approach to optimal robust path planning with obstacles,” in Proc. Amer. Control Conf., Jun. 2006, pp. 2831–2837.
  5. J. van den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information,” Int. J. Robot. Res., vol. 30, no. 7, pp. 895–913, Jun. 2011.
  6. A. Wang, A. Jasour, and B. C. Williams, “Non-Gaussian Chance-Constrained Trajectory Planning for Autonomous Vehicles Under Agent Uncertainty,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 6041–6048, Oct. 2020, conference Name: IEEE Robotics and Automation Letters.
  7. A. Wang, X. Huang, A. Jasour, and B. Williams, “Fast Risk Assessment for Autonomous Vehicles Using Learned Models of Agent Futures,” arXiv:2005.13458 [cs, stat], Jun. 2020.
  8. O. de Groot, B. Brito, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Scenario-Based Trajectory Optimization in Uncertain Dynamic Environments,” IEEE Robot. Autom. Lett., pp. 5389 – 5396, 2021.
  9. M. C. Campi, S. Garatti, and F. A. Ramponi, “A General Scenario Theory for Nonconvex Optimization and Decision Making,” IEEE Trans. Automat. Contr., vol. 63, no. 12, pp. 4067–4078, Dec. 2018.
  10. B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles,” IEEE Trans. on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, Mar. 2016.
  11. W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and Decision-Making for Autonomous Vehicles,” Annu. Rev. Control Robot. Auton. Syst., vol. 1, no. 1, pp. 187–210, May 2018.
  12. W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus, “Safe Nonlinear Trajectory Generation for Parallel Autonomy With a Dynamic Vehicle Model,” IEEE Trans. Intelligent Transportation Systems, vol. 19, no. 9, pp. 2994–3008, Sep. 2018.
  13. B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model Predictive Contouring Control for Collision Avoidance in Unstructured Dynamic Environments,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4459–4466, Oct. 2019.
  14. A. Ben-Tal and A. Nemirovski, “Robust Convex Optimization,” Math. Oper. Res., vol. 23, no. 4, pp. 769–805, Nov. 1998.
  15. A. Mesbah, “Stochastic Model Predictive Control: An Overview and Perspectives for Future Research,” IEEE Control Systems Magazine, vol. 36, no. 6, pp. 30–44, Dec. 2016.
  16. J. F. Fisac, A. Bajcsy, S. L. Herbert, D. Fridovich-Keil, S. Wang, C. J. Tomlin, and A. D. Dragan, “Probabilistically Safe Robot Planning with Confidence-Based Human Predictions,” arXiv:1806.00109 [cs], May 2018.
  17. Masahiro Ono and B. C. Williams, “Iterative Risk Allocation: A new approach to robust Model Predictive Control with a joint chance constraint,” in 47th IEEE Conf. on Decision and Control, Dec. 2008, pp. 3427–3432.
  18. S. Patil, J. v. d. Berg, and R. Alterovitz, “Estimating probability of collision for safe motion planning under Gaussian motion and sensing uncertainty,” in IEEE Int. Conf. Robot. Autom., May 2012, pp. 3238–3244.
  19. L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, “A Probabilistic Particle-Control Approximation of Chance-Constrained Stochastic Predictive Control,” IEEE Trans. Robot., vol. 26, no. 3, pp. 502–517, Jun. 2010.
  20. L. Janson, E. Schmerling, and M. Pavone, “Monte Carlo Motion Planning for Robot Trajectory Optimization Under Uncertainty,” arXiv:1504.08053 [cs], May 2015.
  21. E. Schmerling and M. Pavone, “Evaluating Trajectory Collision Probability through Adaptive Importance Sampling for Safe Motion Planning,” arXiv:1609.05399 [cs], Jun. 2017.
  22. G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How, “Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns,” Autonomous Robots, vol. 35, no. 1, pp. 51–76, Jul. 2013.
  23. K. Ren, H. Ahn, and M. Kamgarpour, “Chance-Constrained Trajectory Planning With Multimodal Environmental Uncertainty,” IEEE Control Systems Letters, vol. 7, pp. 13–18, 2023, conference Name: IEEE Control Systems Letters.
  24. G. Calafiore and M. Campi, “The scenario approach to robust control design,” IEEE Trans. Automat. Contr., vol. 51, no. 5, pp. 742–753, May 2006.
  25. M. C. Campi and S. Garatti, “The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs,” SIAM Journal on Optimization, vol. 19, no. 3, pp. 1211–1230, Jan. 2008.
  26. ——, “A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality,” Journal of Optimization Theory and Applications, vol. 148, no. 2, pp. 257–280, Feb. 2011.
  27. G. Schildbach, L. Fagiano, and M. Morari, “Randomized Solutions to Convex Programs with Multiple Chance Constraints,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2479–2501, Jan. 2013.
  28. S. Garatti and M. C. Campi, “Risk and complexity in scenario optimization,” Math. Program., vol. 191, pp. 243–279, Nov. 2019.
  29. G. C. Calafiore, “Repetitive Scenario Design,” IEEE Transactions on Automatic Control, vol. 62, no. 3, pp. 1125–1137, Mar. 2017, conference Name: IEEE Transactions on Automatic Control.
  30. K. A. Mustafa, O. de Groot, X. Wang, J. Kober, and J. Alonso-Mora, “Probabilistic Risk Assessment for Chance-Constrained Collision Avoidance in Uncertain Dynamic Environments,” Feb. 2023. [Online]. Available: http://arxiv.org/abs/2302.10846
  31. O. de Groot, “Jupyter Notebook for Scenario Dimensioning,” Apr. 2022. [Online]. Available: https://colab.research.google.com/drive/1Xye7960CZAlt4gHpoH6HOvok4-YuLFbD?usp=sharing
  32. F. J. A. Artacho, R. Campoy, and M. K. Tam, “The Douglas-Rachford Algorithm for Convex and Nonconvex Feasibility Problems,” arXiv:1904.09148 [math], Apr. 2019.
  33. O. de Groot, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Scenario-Based Motion Planning with Bounded Probability of Collision,” Jun. 2022. [Online]. Available: https://youtu.be/-rqoTICmEO4
  34. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An Open Urban Driving Simulator,” in Conf. on Robot Learning, Oct. 2017, pp. 1–16.
  35. J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle models for autonomous driving control design,” in IEEE IV Symposium, Jun. 2015, pp. 1094–1099.
  36. K. M. Frey, T. J. Steiner, and J. P. How, “Collision Probabilities for Continuous-Time Systems Without Sampling [with Appendices],” Jun. 2020, arXiv:2006.01109 [cs, math]. [Online]. Available: http://arxiv.org/abs/2006.01109
  37. H. Sartipizadeh and B. Açikmeşe, “Approximate convex hull based scenario truncation for chance constrained trajectory optimization,” Automatica, 2020.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube